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The p-Version of the Finite Element Method 
for Constraint Boundary Conditions 

By I. Babugka*and Manil Suri** 

Abstract. The paper addresses the implementation of general constraint boundary 
conditions for a system of equations by the p-version of the finite element method. By 
constraint boundary conditions we mean conditions where some relation between the 
components is prescribed at the boundary. Optimal error bounds are proven. 

1. Introduction. There is a large variety of boundary conditions for systems 
of differential equations of elliptic type. Some physically natural conditions may be 
formulated by a variational approach through constraint conditions. For example, 
the two-dimensional elasticity problem can be formulated as the minimization of a 
quadratic functional F(u), u = (ul, u2), over a set H satisfying 

(Ho (F))2 C H C (H1 (F))2. 

Selections of H then characterize the boundary conditions. 

Obviously, the choice H = (H1 (F))2 induces the (essential) Dirichlet conditions, 
i.e., the displacement is given on aQ, while H = (H1 ())2 induces the (natural) 
Neumann conditions, i.e., the tractions are prescribed on i9Q. In addition to these 
classical conditions, other types are important in applications. One of these condi- 
tions is characterized by 

(1.1) H = {(ulu2) E (H1(H))2 1 u1Pil (s) + U2 c2(s) = 0 on iQ}, 

where 'p1 and P2 are given functions defined on A9Q. These conditions are in the 
most simple case the symmetry conditions and in general, traction-free constraints 
at the boundary. 

So far we have only mentioned homogeneous boundary conditions. Nonhomoge- 
neous conditions are defined in the usual way, when the minimization of F is over 
a hyperplane Hv = {u + v I u E H, v E (H1 (Q))2}. 

The constraint boundary condition we mentioned above is a type of essential con- 
dition. Hence, when solving such problems by the finite element method in general, 
and by the p or h-p versions in particular, we face the problem of implementing the 
nonhomogeneous boundary conditions (which are outside the finite element space). 
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2 I. BABU?KA AND MANIL SURI 

The p and h-p versions are recent developments, where p, the degree of the 
elements used, is not fixed but is increasing. This is in contrast to the classical h- 
version, where the degree p is kept fixed. The first commercial programs available 
are PROBE (Noetic Tech., St. Louis) and FIESTA (ISMES, Bergamo, Italy). 

The implementation of Dirichlet boundary conditions for the p-version of the 
finite element method has been addressed by us in [2] and [4]. A general survey on 
the state of the art of the p and h-p versions may be found in [1]. 

In this paper we will address the implementation of the constraint conditions 
(1.1) in a simplified setting (to avoid notational difficulties). Section 2 deals with 
preliminaries and notation. In Section 3 we formulate an abstract approach, and 
based on it prove that the suggested finite element formulation of the constraint 
boundary condition leads to the optimal rate of convergence of the p-version. Sec- 
tion 4 addresses some implementational aspects. 

2. Basic Notation and Preliminaries. 
2.1. The Sobolev Spaces. Let R2 be the two-dimensional Euclidean space, x = 

(x1, x2) E R2. Let Q C R2 be a bounded Lipschitzian domain with the boundary 
F = a9. We will assume that F is a Jordan curve, F = UM 1Vi, where Fi are 
smooth open arcs with parametric description 

17i = {(x1, X2) I = = Xi((), x2 = Xi,2((), 1(1 < 1}, i = 1,..., m. 

Denoting I = (-1, 1), 17i is obviously the image of I by the mapping 

Fi = {Xj,l,X%,2}, 

i.e., 17% = Fi(I). If u(s) is defined on 17, then by U(() = u(Fj(E)) we denote 
its transform on I. The ends of 17i will be called vertices and denoted by Ai = 

(Xi,1(-1), Xi,2(-1)), B1 = (xl(l), Xi,2(l)). Wewill further assume that Bi = A+, 
Bm = A1, i = 1, . . . , m. By this, the orientation of ri is established. In general we 
will denote the vertices by Ai (= B-1), i = 1, . . . , m. The scheme of the domain 
and the pertinent notation is shown in Figure 2.1. 

t~~~4 
1 3 =A4 

\ I ~r2 

,f r,~r 

BM=Aj 

FIGURE 2.1 
Scheme of the domain and notation. 

Remark 2.1. We assumed that the domain Q is simply connected. This assump- 
tion has been made only for notational simplicity. 

Remark 2.2. We assumed that the domain is Lipschitzian. Once more, our results 
are valid (with proper modification) in the case when, for example, some arcs 
coincide (as in the case of the slit domain). 
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Remark 2.3. We have assumed that the arcs 1i are sufficiently smooth. For 
the sake of simplicity we assume that they are C' arcs (i.e., the functions xij, 
i = 1,.. ., m, j = 1, 2, are C? functions). 

By Hk(7), k > 0 integer, we denote the usual Sobolev space of functions with 
square integrable derivatives on Q. The norm will be denoted by 11 IIHk(Q). If 
I < q < I + 1, 1 > 0 integer, then we define Hq((Q) = (H'(Q), HI+' (Q))0, 0 = q - 1, 
where by (., .)o we denote the usual interpolated space using the K-method (see 
[5]). The scalar product (', -)Hq and the norm 11 jHq(n) are defined accordingly. 

By Ck(a), k > 0 integer, we denote the space of all functions with k continuous 
derivatives on f. It is possible to show that Hk(q) _ CO(fl) for k > 1, where by 
c- we denote continuous imbedding. On the other hand, H1 (Q) ? CO (Q). 

For I = (-1,1), Hk(I), k > 0 is defined analogously as before. If k > 1/2, then 
Hk(I) c C0(I), but Hk(I) ? C?(I) for k < 1/2. 

So far we have defined Hk(I), k > 0. We will also be interested in Hk(I), k < O. 
We define for k > 0 

f 1 uv dx 
llUllH-k(I) sUP 

E 1 

v#O IIVIIHk(I) 
vEHk (I) 

(Let us remark that sometimes (see, e.g., [5]) our space H-k(I) is denoted by 
(Hk(I))I, whereas H-k(I) is used to denote the dual space of Hok(I).) 

If u is defined on rT, then we define 

Hk(Tr,) = {u I u(Fi()) = U(() E Hk(I)}, 

IIUIIHq(r1') = llUllHk(I). 

So far we have considered only scalar functions on Q and I. The spaces of vector 
functions are defined by Cartesian products, 2Hk(Q) = (Hk(Q))2. 

Now let 

Q = {(Xi,X2)1 lX1 I <1, lX2l < 1}, 
Q 

11 = {(xi,x2) I lxIi < 1, X2 = 1}. 

Q will be called the standard square and -y9, i = 1, 2, 3, 4, its sides (-p, i = 2, 3, 4, 
are defined analogously to -IQ in an obvious way). Let 

T {(xi, x2) llxl < 1, 0<X2 < (1+ xj) for xi < 0 

0 < X2 < (1 - xi)V'3 for Xi > 0}, 

= f{(XlX2)1 XI < 1, X2 = O}. 

T will be called the standard triangle and -dT i = 1, 2, 3, its sides. 
Let us remark that the sides of T and Q are each of length 2. Later we will often 

not distinguish between -ji and I. 
We now define 

p (Q) = {u u is a polynomial of degree < p 

in each variable x1 and x2.over Q}, 

pl (T) = {u u is a polynomial of (total) degree < p on T}, 

W(I) = {u I u is a polynomial of degree < p on I}. 
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FIGURE 2.2 

The scheme of the standard square and standard triangle. 

We then have 

LEMMA 2.1. Let v e Ho(-yQ) n Y(p) (respectively v e Ho(-IT) n97p(-YT)) 
such that 

IIVIIHt(,Q) < p-(l-t)A, t = 0, 1, 

respectively 

IIVIIHt(eyT) < P-(1-t)A, t = 0, 1. 

Then there exists u e 2 (Q) (respectively 3, (T)) such that U = V (respec- 

tively u I yT = V), U Q_,Q = 0 (respectively u I aTT= 0) and 

IIUIIH1(Q) < CP01/2A 

respectively 

IIUIIH1(T) < Cp112 A. 

For the proof see [2] or [3]. 
2.2. The Model Problem. Let 

2HO(F) C X(Q) C H (Q) 

where X'(Q) V 2H1(Q) is closed in 2H1(Q). X?(Q) will be called the constraint 
space. Assume that there is given a continuous bilinear form B(u, v) on 2H' (Q) x 
2H1 (Q), u = (u1,u2), v = (v1,v2), such that 

(2.1) B(u,u) 2 HIIUII2H1(Q), y > 0 for any u E 

Then, obviously, for any G1 (2H1 (Q))' there is a unique uO E X (Q) such that 

B(uo, v) = G1 (v) 

holds for any v E X (Q). We also have 

jjUOII2H1(Q) < CIIGi II (2H1 (0)) . 

Denote ip(Q) = {u E 2Hl(Q), u - p E X'(Q)}. ip(Q) will be called the 
p-hyperplane. Then our model problem is given by: Find uo E Xp(Q) such that 

(2.2) B(uov) = Gi(v) Vv e X(Q) 

We then have 

(2.3) IIUOII2H1(Q) < C[||PII2H1(Q) + JIG, I(2H1(Q))/I. 
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If p = 0, then we will speak about a homogeneous constraint problem, while for 
p $ 0 we will speak about a nonhomogeneous constraint problem. We call these 
constraint problems because R'(Q) #A 2H'(Q). 

There are many constraint problems in applications. We will consider the one 
when 

t(Q = {(%U2) E 2H1(Q) IEc')ui = 0, k = 1,2, j = l,...,m 
1=1 p 

where a3 = {c4I } are matrices of smooth functions on rj (say Co?(rj)). Addi- 

tional assumptions on {a() } will be imposed later. 
Obviously, when cak,k = 1, aXk,l = 0 for k # 1, we get Dirichlet boundary condi- 

tions (in general we get Dirichlet conditions when aW have rank 2 for all x E rj). 
If {a4; } = 0, there is no constraint and we have the Neumann problem. 

If ai has rank 1, then we can write the constraint on rj as 

aLiul + a(i2U2 = 0, 

which will be written in the form 

(2.4a) (j)ul + :(j) u2 = 0. 

Obviously, if p = (P1, P2), then the nonhomogeneous constraint problem is char- 
acterized on rj by 

(2.4b) (i) ul + :(j) U2 = a(i) p1 + 3(j) P2 . 

Problems of this type are common, for example in the theory of elasticity. For 
simplicity of the exposition and notation we will restrict ourselves to the model 
problem where 

B(u, v) au, |, (_ Al + av + aU2 aV2 + aU2 aV2 

ax, aX, aX, aX2 aX2 aX1 aX2 aX2 

(2.5) B 

+Ul1l + U2V2) dxidX2 

and 

Gi(v) = J(fivi + f2V2) dxidX2, f = (fi, f2) E 2H0(Q) 

Although we restrict ourselves to this special case, our results hold in general, e.g., 
for elasticity problems, etc. 

We will assume that a({) E C?c(rj). In practice, we have the nonhomogeneous 
constraint problem defined so that 

(i) If {4(j )} has rank 2 on rj then the constraint is 

2 

E ak~ Ul = gk , k = 1,2, 
1=1 

where (g(j),g~j)) are defined on rF. Hence, we can obviously transform the above 

constraint equation to 
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Because a(;) are assumed to be smooth, we see that {gi)}, i = 1, 2, have the same 

smoothness as { g( j) 

(ii) If {a(g) } has rank 1, then the constraint equation is 

e(i) U + I(j)u2 = 9(i)d 

We add the condition 
a(i) + ,(i) # 0 on rj. 

This enables us to transform the constraint equation to 

(2.7) a(i) + 1(j)u2 = P(i) with ci') + ()= 1. 

As formulated above, g(i) are defined separately on each Fj. We will assume that 
g(i) satisfy consistency conditions, namely that there exists p = (P1, P2) E 2H1 (Q) 
such that 

(2.8a) (i)= Pil X(i) = P2 

respectively 

(2.8b) a(ji)p1 j + I(j)P2 =9 

These conditions have to be imposed especially at the vertices of Q. 
The sides rj where the constraint (2.6) is imposed will be called total constraint 

sides, while rj where the constraint (2.7) is imposed will be called partial constraint 
sides. We will enumerate the total constraint sides asrij, j = 1,... , ml, and the 
partial constraint sides as riF, j = m1 ..... I, m. 

2.3. The p-Version of the Finite Element Method. Assume that the domain Q 
has been partitioned into a finite number of subdomains Qi, i.e., = Un=l Q. We 
shall assume that QR is the curvilinear quadrilateral 

Qi = (Q) 

or curvilinear triangle 
Ri = (T) 

where Q and T are the standard square and triangle, respectively. The domains 
Qj will be called elements. We will assume that F-' is a smooth one-to-one 
mapping of Qi onto Q, respectively T. It is obvious what the vertices and sides 
of QF correspond to. If -f is a side of Qi, then 5Fj induces mapping Fj of I onto 

-f (realizing that all the sides of the standard square and triangle have the same 
length as I). 

We shall assume the following about the partition and the mappings Fj: 
(a) If Ri n Q1 = Rij 5 0, then Rij is either a common vertex or a side of both 

Qj and Qj. 
(3) If Rij = -i~j, then we will assume that the mappings F of I onto i-j 

induced by the mappings F and j are identical. We denote F by Fij. This 
implies the following: Let A, B, the vertices of f7i and Qj, be the end points of 

fi~j. Assume that (a,, bl) and (a2,b2) are the end points&of the sides -fQ or 7y 
such that 7(al) = j(a2) = A, Y(b1) = j(b2) = B. Then, if C C -ij and 
C-= ~(c1l) = j(c2), a1cl = a2c2 and c1b1 = c2b2. 
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Since we assumed that 5 are smooth mappings, the vertices of Q necessarily 
have to coincide with some of the vertices of Qj. We will further assume that for 
any r1 there is an element f7i such that one of its sides coincides with rF. This 
assumption is made without any loss of generality. 

Denote now 

1,p(X7) = { E H u 
(Q) | ()) E (Q) if ? 

l is a quadrilateral 

and u Y (,(()) E 1 (T) if Q? is a triangle} 

2yp(q) = (1yp (q)) 2 

P()= {u uj I(Fj(()) E Yp(I), j = 1, 2}. 

Here, -y = ri or any side of an element. Let us define the constraint space Iryp (Q) C 

p (Q) as follows: 
(i) If rj is a total constraint side with end points Aj, Aj+1 and u E Y (Q), 

then ui(Aj) = ui(Aj+i) = 0, i = 1, 2, and 

fuiuids=0 for all4'i e 1lyp2(rj), i= 1,2. 

(ii) If rj is a partial constraint side, then 

(C(j)ul + P(')u2)(Ak) = 0, k = jj + 1, 

and 

J(C(j)U1 +,0(j)u2)4ds = 0 for all X E 2 (ri). 

The p-hyperplane t'Jp (Q) is defined analogously. Let g be defined in terms of 
p by (2.8) . Then on rj we impose 

ui (Ak) = gW j(Ak), i= 21,2 k = jlj+1, 

respectively 

(ae(j) U + 1(j) U2) (Ak) = g(j) (Ak), k = jj + 1, 

and 

(2.9a) / uii ds = j gj)ij ds, i = 1, 2, 

respectively 

(2.9b) (a(j)u1 + d(j) U2) ds = j g(j) ds. 

The p-version is then defined analogously as before: Find up E Z Dp (Q) such that 

(2.10) B(up,v) = Gi(v) Vv E yp (Q) 

Remark. Constraints of the type considered are typical in elasticity theory. 
Here, u1 and U2 are the displacements in the directions xl and X2, respectively. 
Assume now that the displacement is constrained in the normal direction only (and 
is friction-free in the tangential direction). Then on thecboundary, we obtain the 
partial constraint U1 cos O + U2 sin p = 0, where p is the angle of the outer normal 
with the axis z1. 
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3. The Convergence of the p-Version of the Finite Element Method. 
3.1. An Abstract Result. We will first describe an abstract framework which will 

be the basis for the forthcoming analysis. 
Let X and W be Hilbert spaces and Xp c X, Wp c W, p = 1, 2, .. ., be one- 

parameter families of finite-dimensional subspaces. Xp c X, Wp c W will denote 
corresponding families of hyperplanes such that (u - v) E Xp whenever u, v E Xp, 
and (p - b) E Wp whenever p, E Wp . 

Let a(u,v), u,v E X, be a continuous bilinear form on X x X and b(v, p) be a 
continuous bilinear form on X x W such that b(v, p) < C I vIxI Iw 

Let uo E X, po E W and up E Xp, pp E Wp be such that 

(3.1a) a(uo, v) + b(v, po) = Fi (v) Vv EX,, 

(3.1b) b (uo I ) = '2 (0) VO E ITp 

and 

(3.2a) a(up,,v) +b(v,ppp) = Fi(v) Vv EXp 
(3.2b) b(up,,y))=F2(0) V4E5WP. 

Define Zp ={v E Xp, b(v, 0) =O V EWp} c Xp. Then we have 

THEOREM 3.1. Let a(u, u) > ?jjuj2I, -f > 0, for any u E Zp. Then 

(3.3) Iluo - UpIjx < C inf Iluo - WpIIx + inf IcPO - xpIIW 
b(uo-w p,,)=O tE p XpEWp 

up-wpEXp 
L (i.e. ,uP-wpEZp) 

Proof. For arbitrary wp E Xp and Xp E Wp we have 

(3.4a) a(up - wp, v) + b(v, pp - Xp) 

=a(uO-wpv)+b(v,po-Xp) VvEXp, 

(3.4b) b(up - wp, k) = b(uo - wp, 4) V' E Wp. 

For v E Zp, (3.4a) yields 

(3.5) a(up -wp, v) = a(uo -wp, v) + b(v, po -Xp). 

Suppose now that wp is such that 

b(wp, , ) = b(uo, 4) V4' E Wp 

Then, by (3.4b), 

b(up -wp, , ) = O V E Wp 

and hence 

UP- wp E ZP. 

Now using v = up- wp in (3.5), we get 

a(up - wpUP - wp) < C[HIuo - wpIlxllup - WpIIx + IIPo - xpIIwIIup - WpIIxl 
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and hence, by coercivity of a(., ) on Zp, 

flup - WpjjX < CUIuo - WpllX + Ipoo - XPIIW] 

and hence also 

I1uo - wpljx ? C[J1uo - wpllx + Ikoo - xpjiw], 

from which (3.3) follows. 0 
3.2. The Convergence of the p-Version. Let uo (uO,1, UO,2) E 2H1(Q) be the 

solution of our constrained problem (2.2), (2.5) and up = (up,1 I up,2) e 2'7(i) be 
the approximation given by (2.10). 

We will assume that uo E 2Hk(Q), k > 3/2. Hence auo/dn E 2H0(ri) 
i = 1,2,... , m. Let the constraints on rj be as in Subsection 2.2, with rij, 
j = 1...mi, being the total constraint sides and rij, j = ml + 1,...m, the 
partial constraint sides. Then it can be verified that for any v e 2H'(Q), 

B(uov) - E V( + v2} ds 

(. m (a ilv1 + OilV2)( dU1 +U0,2) ds = Gi(v), 
j-m+l~j '3 On + n 

where we have assumed ail + tij = 1. Moreover, for i/', I1, b2 and p as in (2.8)- 

(2.9), 
Ml m r 

(. = z(p,1f + UpUi22) ds + )+ f (iupu1 + Si-u p2) ,) d d 

j=1 2 t j+ml rz2 

Ml m 

and 

(3.8a) Up, k(Aj) =UO, k(Aj) = Pk (Aj), j=111+11 k =1,2, 
r ... , 

(3.8b) 7(alupl)(Aj) + (I3'up,2)(Aj) = (a'uo,1)(Aj) + (f3'uO,2)(Aj) 
= | (a'p)(A) +(/'P2)(Aj), i = 1,| +1,I=imi +d,-m. 

(We remark that uo,i (Aj), i = 1, 2, has meaning because we assumed that uo E 

We now define 
K= 2H1(<) if f-iJX =1 t 112H1(O) 

and for any 6 = (61,62) E X, 

(3.8a = {u = (uliU2) =3(f), Uk(Aj) j6k(A1), k 1,2, 

3 = 1,+, 1 + tl, I= m, (a' Ul)(Aj)+(/'u2)(Aj) 

= (a'61)(A) + (3'62)(Aj),j =I +1,1 I = im1+l, . * iml 
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We then take in our abstract framework 

Xp = Xpp, xp = Xpo, 
where p satisfies (2.6)-(2.8). Moreover, let 

ml m 

W = l2 H- 1/2 (ri ) X fJ 1H- 1/2( ) 
j=j j=ml +1 

with the norm 

ml m ~~~~~~~~~~~1/2 

=IpkI1w = IL | IIH- I/2(F,) + E IiII1H- 1/2(r,] 1/2 

We then see that po E W, where (see (3.6)) 

- ( auo l aU0,2 ml 
(Duoian + Xan ) 

=-,' + 0,2 I = , Ml +1, ..... ,m. An An 

Define Wp = Wp = H>m 1 jWp C W, where 

= 2H-1/2(ri) n 29p 2(rj), j = 1,..ml 
= 'H-/2(riF ) nly p2(rj), j =ml + 1,... ,m. 

Let a(., ) and b(., ) be bilinear forms defined respectively on X x X and X x W 
by 

a(u, v) = B(u, v), 

b(u, ) E| (ul' + U2N2) ds + E j (ai U + di3 U2 ds. 
j=1 t j=mi+1 23 

It may be seen that the right-hand side of (3.7) defines a linear functional G2 on Wp. 
Then (3.6)-(3.8) show that (uo, po) satisfy (3.1) with Fk = Gk, k = 1, 2. Moreover, 
if we can find a unique pair (up, (p) satisfying (3.2), then up will be precisely our 
finite element solution satisfying (2.10). We will now verify that the mixed method 
defined above satisfies the assumptions of Theorem 3.1. This in turn will lead to 
the existence and uniqueness of the solution (up, 'p) of (3.2) and an estimate of 
the rate of convergence of up to u. 

Obviously, a(u, v) satisfies the desired continuity and coercivity conditions. For 
1, 2, ... ,m we have 

|u~ds <_ CIIuIIH1/2(r, )11011H-112 (r, 

from which the continuity of b(., ) may be deduced. Hence Theorem 3.1 is applica- 
ble. Let us now estimate infXEw, jIpo-XIjw. First, let ml+1 < j < m. We assumed 
that po,j E Hk-3/2(ri,), k > 3/2. Hence, po,3(Fi,()) = (() e Hk-3/2(I). Let 
a E 1'Yp-2 (I) be such that 

(3.9) f5p dE = fppdp Vp E lyp-2(I). 
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Then, with q = p- a, we have 

(3.10) llqllHo(I) < Cp ( k 3/2) I kII-Hk_32 (I). 

Now, for arbitrary v E H'(I), we have by (3.9) 

f, qv df Sq(v -,r) de < ||q||H?(I) IIV 
- Ol IIHO(I) < Cp-1IlqIIH0(I)) 

fV1Hqd) f1( qv) -'1 (I) - I)|jV-UH1(I) 

where a1 is a polynomial of degree p - 2 satisfying 

((V - 0l ((Ho(I) < Cp' ((V(IH1 (I) 

This yields 

(3.11) IlqllIH-(I) ? Cp-(k-1/2) Ik(PIIHk-3/2 (I) 

Interpolating (3.10), (3.11) and using the fact that Fi. is a smooth mapping, we 
obtain 

inf |((PO, - XPIIH-1/2(r23) < Cp-(k-1) II( poi IlHk-3/2(r,) 

We get similar estimates for Fi., j = 1, ... , ml, so that 

(3.12) inf Ikoo - xpllw < Cp (k 1)IIUO2Hk(Q) 

We now estimate inf IIuo-wpIIx. Using the results from [2], there exist zi E 19p(0), 
i = 1, 2, such that 

(3.13a) -uoi -ZillHt(Q) < Cp (kt)IIU0,iIHk(Q) i = 1,2,t = 0,1, 

(3.13b) uoi(N) = zi(N) for each node N of the mesh, 

(3.13c) |lUo - iZiIIHt(Jr7) < Cp'(k'1/2It)UOIIU0,iHk(Q2), t = 0, 1,i = 1,2, 

j =1,2, ...,m. 

Let ml + 1 < j < m. Let us denote ic - &' (uo,1 - z1) + b (uO,2 - Z2). Then we 
have ic(Ai,) = K(Ai+1) = 0. Let R(() = rc(F(l)) and let r(F(()) = E() e &p(I) 
satisfy i(?1) = 0 and 

j vd =jkv d Vv E lp-2 (I) 

Because of (3.13b) we can write 

j iw'd = j V''d< Vw E 1?p(I), W(?1) = 0, 

and hence by Lemma 3.2 of [2] 

Ilk - flIHt(I) < Cp-(k-1/2-t) IIUoII2Hk(Q), t = 0, 1. 

Using (3.13c), this gives 

PIITIHt(I) < Cp (k-1/2-t)uIIUO12Hk(Q), t = 0, 1. 

Now using Lemma 2.1, it follows that there is a w E ?SYp(Q) such that w = 0 on 
Q - Q2, where Q is the element with the side Fi., w = r oj FiJ, ,w = 0 on ?2 -ri 

and 
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Letting wij = (wIw) E 2HH1'(i), we see that wi, will satisfy (3.14) with H1(Q) 
replaced by 2H1(Q). 

Let now wp = z + wi, = (Zl,Z2) + (W,W). Using (3.13b) and the fact that 
w(Al) = 0, we obtain 

(aij (UO,1 - Wp,1) + di3 (UO,2 - Wp,2))(Al) = 0 1 = i3,i + 1. 

Moreover, for XE lp_2(Fij), 

f ( u0' (uo,1 - Wp,) + 3ij (UO,2 - Wp,2)) ds 

(r _ (agij + Alit)w)V) ds = r - (cw)V) ds = O. 
rij t 

where we have used alo + f'3 = 1. We may construct wi as above for all partial 
constraint sides. An analogous construction can be carried out for total constraint 
sides as well. Then, if 

m 

Wp = Z+E Wi3 

j=1 

we see that 

UP- p E XpI 

b(uo-wwp, 0)=O V0EWp 

and 
m 

Iluo - Wp|X < Iluo - zI1x + E I|Wj3 liX < Cp (kl) 1|UoII2Hk(Q). 
j=1 

This provides a bound for the first term in the right-hand side of (3.3). Hence we 
have proven 

THEOREM 3.2. Let uo E 2Hk(Q), k > 3/2. Then 

IIUo - UpII2H1(Q) < Cp (k 
l)juoI2Hk(Q), 

where uo is the exact solution and up is the finite element solution of the constrained 
problem, provided that uo and up exist. 

The next theorem deals with the question of existence and uniqueness of (uo, po0) 
and (up, pp). 

THEOREM 3.3. The (exact) solution (uo, rpo) of the constrained problem exists. 
The finite element solution (up, r'p) exists and is unique. 

Proof. In Subsection 2.2 we have shown that uo exists and hence (uo, p0) exists, 
too. The finite element solution (up, 'p) is determined by the solution of a linear 
system of equations with square matrix. Hence the existence follows from the 
uniqueness. Assume therefore that there is a solution (up, 'pp) of the trivial problem. 
Obviously a = p = 0 is also a solution of this problem. Hence up = 0 because of 
Theorem 3.1. We have to show, therefore, that 

f( i + v2)pp d = 0 
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implies 'pp = 0. Because af + / = 1 we also have f vwp d = 0 for all v E 

'93p(I) n Ho(I) while 'pp E y9Ep_2(I). This leads to pp = 0, which leads to the 
desired result. E 

Remark. We have dealt only with a model problem. It is obvious that the 
theorem holds in general, as for example for the theory of elasticity. 

4. Some Aspects of Implementation. Here we will make some comments 
about the implementation in the framework of the code PROBE*** (see [6]). The 
shape functions are defined as usual on the standard square or triangle. There are 
three types: 

(a) the nodal shape functions which are linear on every side of Q, respectively 
T; 

(b) the side functions which are zero at the vertices of Q, respectively T, and on 
My are of the form 

(j = Ij (() do, j =1 ,.. 
-1 

where Ij is the Legendre polynomial of degree j. (j is then a polynomial of degree 
j+1; 

(c) The internal shape functions which are zero on aQ (respectively AT). 
The stiffness matrices are first computed in the standard way without con- 

straints. Then the constraints are imposed at the vertices Aj. This only involves 
the amplitudes for the nodal shape functions. Then the conditions (2.9a,b) only 
involve amplitudes for the side shape functions. The functions ' in (2.9a,b) are 
computed as derivatives of the Legendre polynomials from the usual recurrence 
formula and the integration is made using numerical quadrature. 

The condition (2.9a) is especially simple because ui = Eciei. Integrating by 
parts and exploiting orthogonality of the Legendre polynomials, we get the ampli- 
tudes for the side shape functions on the total constraint sides directly. 
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'** The code PROBE is the code of Noetic Tech., St Louis. 
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